205 research outputs found

    The NEUMA Project: towards Cooperative On-line Music Score Libraries

    Get PDF
    Περιέχει το πλήρες κείμενοThe NEUMA project (http://neuma.irpmf-cnrs.fr) aims at designing and evaluating an open cooperative system for musician communities, enabling new search and analysis tools for symbolic musical content sharing and dissemination. The project is organized around the French CNRS laboratory of the Bibliothèque Nationale de France which provides sample collections, user requirements and expert validation. The paper presents the project goals, its achitecture and current state of development. We illustrate our approach with an on-line publication of monodic collections centered on XVIIe century French liturgic chants

    Using level-2 fuzzy sets to combine uncertainty and imprecision in fuzzy regions

    Get PDF
    In many applications, spatial data need to be considered but are prone to uncertainty or imprecision. A fuzzy region - a fuzzy set over a two dimensional domain - allows the representation of such imperfect spatial data. In the original model, points of the fuzzy region where treated independently, making it impossible to model regions where groups of points should be considered as one basic element or subregion. A first extension overcame this, but required points within a group to have the same membership grade. In this contribution, we will extend this further, allowing a fuzzy region to contain subregions in which not all points have the same membership grades. The concept can be used as an underlying model in spatial applications, e.g. websites showing maps and requiring representation of imprecise features or websites with routing functions needing to handle concepts as walking distance or closeby

    Fuzzy regions: adding subregions and the impact on surface and distance calculation

    Get PDF
    In the concept of fuzzy regions we introduced before, a region was considered to be a fuzzy set of points, each having its own membership grade. While this allows the modelling of regions in which points only partly belong to the region, it has the downside that all the points are considered independently, which is too loose a restriction for some situations. The model is not able to support the fact that some points may be linked together. In this contribution, we propose an extension to the model, so that points can be made related to one another. It will permit the user to, for instance, specify points or even (sub)regions within the fuzzy region that are linked together: they all belong to the region to the same extent at the same time. By letting the user specify such subregions, the accuracy Of the model can be increased: the model can match the real situation better; while at the same time decreasing the fuzziness: if points are known to be related, there is no need to consider them independently. As an example, the use of such a fuzzy region to represent a lake with a variable water level can be considered: as the water level rises, a set of points will become flooded; it is interesting to represent this set of points as a. subset of the region, as these points are somewhat related (the same can be done for different water levels). The impact of this extension to the model on both surface area calculation an distance measurement are considered, and new appropriate definitions are introduced

    The K Group Nearest-Neighbor Query on Non-indexed RAM-Resident Data

    Get PDF
    Data sets that are used for answering a single query only once (or just a few times) before they are replaced by new data sets appear frequently in practical applications. The cost of buiding indexes to accelerate query processing would not be repaid for such data sets. We consider an extension of the popular (K) Nearest-Neighbor Query, called the (K) Group Nearest Neighbor Query (GNNQ). This query discovers the (K) nearest neighbor(s) to a group of query points (considering the sum of distances to all the members of the query group) and has been studied during recent years, considering data sets indexed by efficient spatial data structures. We study (K) GNNQs, considering non-indexed RAM-resident data sets and present an existing algorithm adapted to such data sets and two Plane-Sweep algorithms, that apply optimizations emerging from the geometric properties of the problem. By extensive experimentation, using real and synthetic data sets, we highlight the most efficient algorithm

    Supervised Domain Adaptation using Graph Embedding

    Get PDF
    Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of dimensionality reduction and propose a generic framework based on graph embedding. Instead of solving the generalised eigenvalue problem, we formulate the graph-preserving criterion as a loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework; a simple LDA-inspired instantiation of the framework leads to state-of-the-art performance on two of the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.Comment: 7 pages, 3 figures, 3 table

    Classification in Geographical Information Systems

    Full text link

    Scale in object and process ontologies

    Get PDF
    Scale is of great importance to the analysis of real world phenomena, be they enduring objects or perduring processes. This paper presents a new perspective on the concept of scale by considering it within two complementary ontological views. The first, called SNAP, recognizes enduring entities or objects, the other, called SPAN, perduring entities or processes. Within the meta-theory provided by the complementary SNAP and SPAN ontologies, we apply different theories of formal ontology such as mereology and granular partitions, and ideas derived from hierarchy theory. These theories are applied to objects and processes and form the framework within which we present tentative definitions of scale, which are found to differ between the two ontologies

    Live Coding, Live Notation, Live Performance

    Get PDF
    This paper/demonstration explores relationships between code, notation including representation, visualisation and performance. Performative aspects of live coding activities are increasingly being investigated as the live coding movement continues to grow and develop. Although live instrumental performance is sometimes included as an accompaniment to live coding, it is often not a fully integrated part of the performance, relying on improvisation and/or basic indicative forms of notation with varying levels of sophistication and universality. Technologies are developing which enable the use of fully explicit music notations as well as more graphic ones, allowing more fully integrated systems of code in and as performance which can also include notations of arbitrary complexity. This itself allows the full skills of instrumental musicians to be utilised and synchronised in the process. This presentation/demonstration presents work and performances already undertaken with these technologies, including technologies for body sensing and data acquisition in the translation of the movements of dancers and musicians into synchronously performable notation, integrated by live and prepared coding. The author together with clarinetist Ian Mitchell present a short live performance utilising these techniques, discuss methods for the dissemination and interpretation of live generated notations and investigate how they take advantage of instrumental musicians’ training-related neuroplasticity skills
    corecore